

From theory to practice: Representing Graphs

Nitrogen Pollution to the Chesapeake Bay

By Sector

SOURCE: CHESAPEAKE BAY PROGRAM

- * 1% NATURAL AIR POLLUTION
- ¹ AGRICULTURAL EMISSIONS OF AIR POLLUTION
- 2 ASSUMING THAT ROUGHLY 40% OF TOTAL STORMWATER N $^{\mbox{\scriptsize December}}$ 2012

Pie Charts

Bar Graphs

Line Graphs

Scatter Plots

Less Common

Bubble Cloud

Tree Map

Bubble Chart

Parallel Graph

Less Common

Radial/Spider Graph

Box and Whisker Plot

Radial Tree

dependency

Choosing the right graph

- Line graphs are especially helpfut for showing how something changes over time.
- Scatter Plots are similar, and good for showing trends in data. They show how much one variable is affected by another.
- Bar graphs are used to compare two or more categories of things.
- Line, bar, and scatter plot graphs all have a dependent variable that is measured and plotted on the y-axis.
- Line graphs are preferred for showing changes over time because they better represent a continuum of data. Information presented in a bar graph is divided into categories.
- Pie charts show proportions and always add to 100%.

Pie Graphs

Steps for making a pie chart:

- 1. Collect the data and organize them in a table with column and row headings (see Table 1). Remember, pie charts are used to display percentages and the total of all categories always adds up to 100%.
- 2. Calculate the proportions and circle degrees for each item in the table (for younger students, calculating circle degrees is not necessary; estimating and drawing the proportions will suffice).
- 3. Draw a circle to represent a pie chart.
- 4. Transfer the data to the graph by drawing segments in the chart.

 Distinguishing sections by color is the standard way to tell them apart.
- 5. Decide on a title for the pie chart. The title should go at the top and summarize the variables studied.
- 6. Create a key to identify the sections of the pie chart.

Pie Graphs

Make a pie graph with this information collected from class.

What is your favorite off period?

____ Period 2 ____ Period 5a

____ Period 3 ____ Period 5b

_____ Number of students

 $_{---}$ Period 6

____ Period 7

Line Graph

- 1. Collect the data and organize them in a table with column and row headings (see Table 2).
- 2. Draw a right angle on the board to represent the graph axes.
- 3. Label the x and y axes of the graph. Lay out the scales for each axis (for the example below: height in inches, 0-60, age in years, 1-10).
- 4. Transfer the data to the graph by adding data points and drawing a line through them.
- 5. Decide on a title for the graph. The title should go at the top and describe the relationship between the variables represented.

Line Graph

Create a Line Graph using this information.

Kerry's height since age one		
Age (in years)	Height (in inches)	
1	27	
2	32	
3	37	
4	40	
5	42	
6	45	
7	48	
8	50	
8	52	
10	54	

Table 2: Table of student's growth

Scatter Plot

Scatter plots are best for showing whether two variables are correlated. Examples to graph: the number of hours that students spent studying for an exam versus the grade received.

Steps for making a line graph:

- 1. Collect the data and organize them in a table with column and row headings.
- 2. Draw the outline of a graph (a right angle) on the board to represent the graph axes.
- 3. Label the x and y axes of the graph. Lay out the scales for each axis.
- 4. Transfer the data to the graph by adding data points.
- 5. You may choose to draw a best-fit line through the points if they seem to be correlated. (This has not been done in the sample, but it appears there is a positive correlation between time spent studying and test score.)
- 6. Decide on a title for the graph. The title should go at the top and describe the relationship between the variables represented.

Scatter Plot

Create a Scatter Plot Graph using this information.

Student	Hours spent studying	Test score
1	3	80
2	5	90
3	2	75
4	6	80
5	7	84
6	1	55
7	2	64
8	0.5	48
9	1	42
10	7	100
11	1.5	81
12	2.5	82
13	3.5	82
14	4	91
15	1.5	61

Table 3: Table of study time and associated test score

Bar Graph

Steps for making a bar graph:

- Collect the data and organize them in a table with column and row headings (.
- 2 Draw a right angle on the board to represent the axes of the graph.
- Label the x and y axes for the graph. Lay out the scales for the y-axis and the categories for the x-axis.
- Transfer data to the graph by drawing bars on the graph.
- Decide on a title for the graph. The title should go at the top and describe what the graph is about.

Bar Graph

Create a Bar Graph using this information.

Kind of Pet	Number of Students who have at least one of this kind of Pet
Dog	6
Cat	7
Fish	8
Rodents	5
Others	3

Table 4: Pets owned by students

Now create a less common graph...

On the back of your paper: You must create a "less common" graph using at least 2 data points from your terrarium data weekly sheet. It can not be one of the graphs you have already done.

Kahoot Quiz

https://create.kahoot.it/details/bar-graphs/b0b86a76-196b-4de2-aa32-2ab819ac7ab9